Bài 2.7 trang 112 Sách bài tập (SBT) Đại số và giải tích 11


Nội dung bài giảng

Dãy số \(\left( {{x_n}} \right)\) được biểu diễn trên trục số bởi tập hợp các điểm, kí hiệu là A :

$$A = \left\{ {{A_0},{A_1},{A_2},...,{A_n}} \right\}$$

Gọi B là điểm nằm ngoài trục số. Người ta dựng các tam giác đỉnh B và hai đỉnh còn lại thuộc tập hợp A.

Đặt un là số các tam giác được tạo thành từ B và hai trong số n + 1 điểm \({A_0},{A_1},{A_2},...,{A_n}\) rồi lập dãy số un

a)      Tính \({u_1},{u_2},{u_3},{u_4}\) ;

b)      Chứng minh rằng \({u_n} = C_{n + 1}^2\) và \9{u_{n + 1}} = {u_n} + n + 1\)

Giải:

a)  

\(\eqalign{
& {u_1} = 1 \cr
& {u_2} = 3 \cr
& {u_3} = 6 \cr
& {u_4} = 10 \cr} \)   

b)      Số các tam giác un tạo thành từ B và n + 1 điểm chính là số tổ hợp chập 2 của n + 1 phần tử:

Áp dụng công thức \(C_n^k = C_{n - 1}^k + C_{n - 1}^{k - 1}\)

Ta có \(C_{n + 2}^2 = C_{n + 1}^2 + C_{n + 1}^1\)

Hay \({u_{n + 1}} = {u_n} + n + 1\)