Bài 5 trang 121 SGK Giải tích 12


Nội dung bài giảng

Bài 5. Cho tam giác vuông \(OPM\) có cạnh \(OP\) nằm trên trục \(Ox\). Đặt  \(\widehat {POM} = \alpha \)

và \(OM = R\), \(\left( {0 \le \alpha  \le {\pi  \over 3},R > 0} \right)\)

Gọi   là khối tròn xoay thu được khi quay tam giác đó xung quanh \(Ox\) (H.63).

a) Tính thể tích của  theo \(α\) và \(R\).      

b) Tìm \(α\) sao cho thể tích  là lớn nhất.  

  

Hướng dẫn giải :

a) Hoành độ điểm \(P\) là : 

\(x_p=  OP = OM. cos α = R.cosα\)

Phương trình đường thẳng \(OM\) là \(y =  tanα.x\). Thể tích \(V\) của khối tròn xoay là:

\(V = \pi \int\limits_0^{R\cos \alpha } {{{\tan }^2}\alpha {{{x^3}} \over 3}\left| {_0^{R\cos \alpha } = {{\pi .{R^3}} \over 3}(\cos \alpha  - {{\cos }^3}} \right.} \alpha )\)

b) Đặt \(t = cosα \Rightarrow t ∈ \left[ {{1 \over 2};1} \right]\). \(\left( \text{ vì }{\alpha  \in \left[ {0;{\pi  \over 3}} \right]} \right)\),  \(α = arccos t\).

Ta có :

\(\eqalign{
& V = {{\pi {R^3}} \over 3}(t - {t^3});V' = {{\pi {R^3}} \over 3}(1 - 3{t^2}) \cr
& V' = 0 \Leftrightarrow \left[ \matrix{
t = {{\sqrt 3 } \over 3} \hfill \cr
t = {{ - \sqrt 3 } \over 3}\text{ (loại)} \hfill \cr} \right. \cr} \)

 Từ đó suy ra \(V\) lớn nhất bằng \({{2\sqrt 3 \pi R^3} \over 27}\) \(\Leftrightarrow t = {{\sqrt 3 } \over 3} \Leftrightarrow \alpha  = \arccos {{\sqrt 3 } \over 3}\)