Câu 14 trang 213 SGK Giải tích 12 Nâng cao


Nội dung bài giảng

Tính các tính phân sau

a) \(\int\limits_0^1 {{{dx} \over {{x^2} + 1}}} \)

b) \(\int\limits_0^1 {{{dx} \over {{x^2} + x + 1}}} \)

c) \(\int\limits_0^1 {{x^2}{e^x}dx} \)

Giải

a) Đặt \(x = \tan t \Rightarrow dx = {1 \over {{{\cos }^2}t}}dt\)

 

 \(\int\limits_0^1 {{{dx} \over {{x^2} + 1}}}  = \int\limits_0^{{\pi  \over 4}} {{{dt} \over {{{\cos }^2}t({{\tan }^2}t + 1)}}}  = \int\limits_0^{{\pi  \over 4}} {dt}  = {\pi  \over 4}\)

b) Ta có:

\(I = \int\limits_0^1 {{{dx} \over {{x^2} + x + 1}}}  = \int\limits_0^1 {{{dx} \over {{{(x + {1 \over 2})}^2} + {{({{\sqrt 3 } \over 2})}^2}}}} \)

Đặt \(x + {1 \over 2} = {{\sqrt 3 } \over 2}\tan t \Rightarrow dx = {{\sqrt 3 } \over 2}(1 + {\tan ^2}t)dt\)

 

\(I = \int\limits_{{\pi  \over 6}}^{{\pi  \over 3}} {{{{{\sqrt 3 } \over 2}dt} \over {{3 \over 4}}}}  = {4 \over 3}.{{\sqrt 3 } \over 2}.{\pi  \over 6} = {{\sqrt 3 \pi } \over 9}\) 

c) Đặt 

\(\left\{ \matrix{
u = {x^2} \hfill \cr
dv = {e^x}dx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = 2xdx \hfill \cr
v = {e^x} \hfill \cr} \right.\)

Do đó: \(\int\limits_0^1 {{x^2}{e^x}dx}  = {x^2}{e^x}|_0^1 - 2\int\limits_0^1 {x{e^x}dx = e - 2\int\limits_0^1 {x{e^x}dx\,\,\,\,\,\,\,(*)} } \)

Đặt

\(\left\{ \matrix{
u = x \hfill \cr
dv = {e^x}dx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = dx \hfill \cr
v = {e^x} \hfill \cr} \right.\)

Suy ra:

\(\int\limits_0^1 {x{e^x}dx = x{e^x}|_0^1}  - \int\limits_0^1 {{e^x}dx}  = e - {e^x}|_0^1 = 1\) 

Từ (*) suy ra:  \(\int\limits_0^1 {{x^2}{e^x}dx}  = e - 2\)