Cho hàm số \(y = f\left( x \right)\) liên tục và đồng biến trên \(\left[ {0;\dfrac{\pi }{2}} \right]\), bất phương trình \(f\left( x \right) > \ln \left( {\cos x} \right) - {e^{\pi x}} + m\) (với \(m\) là tham số) thỏa mãn với mọi \(x \in \left( {0;\dfrac{\pi }{2}} \right)\) khi và chỉ khi:

A.A. \(m \le f\left( 0 \right) + 1\)  
B.B. \(m > f\left( 0 \right) - 1\)    
C.C. \(m < f\left( 0 \right) + 1\)   
D.D. \(m \ge f\left( 0 \right) + 1\) 
Đáp án và lời giải
Đáp án:A
Lời giải:

Ta có \(f\left( x \right) > \ln \left( {\cos x} \right) - {e^{\pi x}} + m \Leftrightarrow f\left( x \right) - \ln \left( {\cos x} \right) + {e^{\pi x}} > m\,\,\forall x \in \left( {0;\dfrac{\pi }{2}} \right)\)

Đặt \(g\left( x \right) = f\left( x \right) - \ln \left( {\cos x} \right) + {e^{\pi x}} \Rightarrow g\left( x \right) > m\,\,\forall x \in \left( {0;\dfrac{\pi }{2}} \right) \Leftrightarrow m \le \mathop {\min }\limits_{\left[ {0;\frac{\pi }{2}} \right]} g\left( x \right)\)

Ta có \(g'\left( x \right) = f'\left( x \right) + \dfrac{{\sin x}}{{\cos x}} + \pi {e^{\pi x}}\)

Với \(x \in \left( {0;\dfrac{\pi }{2}} \right) \Rightarrow \left\{ \begin{array}{l}\sin x > 0\\\cos x > 0\end{array} \right.\), theo giả thiết ta có \(f'\left( x \right) > 0\,\,\forall x \in \left( {0;\dfrac{\pi }{2}} \right) \Rightarrow g'\left( x \right) > 0\,\,\forall x \in \left( {0;\dfrac{\pi }{2}} \right)\)

\( \Rightarrow \) Hàm số \(y = g\left( x \right)\) đồng biến trên \(\left( {0;\dfrac{\pi }{2}} \right)\).

\( \Rightarrow \mathop {\min }\limits_{\left[ {0;\frac{\pi }{2}} \right]} g\left( x \right) = g\left( 0 \right) = f\left( 0 \right) - \ln \left( {\cos 0} \right) + {e^0} = f\left( 0 \right) + 1 \Leftrightarrow m \le f\left( 0 \right) + 1\).

Chọn A.

Bạn có muốn?

Xem thêm các đề thi trắc nghiệm khác

Chia sẻ

Một số câu hỏi khác có thể bạn quan tâm.