Cho hàm số \(y=f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và \(f\left( 0 \right)=0;f\left( 4 \right)>4\). Biết hàm số \(y={f}'\left( x \right)\) có đồ thị như hình vẽ bên. Tìm số điểm cực tiểu của hàm số \(g\left( x \right)=\left| f\left( {{x}^{2}} \right)-2x \right|\).

A.A. 2
B.B. 1
C.C. 3
D.D. 0
Đáp án và lời giải
Đáp án:A
Lời giải:

Đặt \(h\left( x \right)=f\left( {{x}^{2}} \right)-2x\Rightarrow {h}'\left( x \right)=2x.{f}'\left( {{x}^{2}} \right)-2\).

Vì \({{x}^{2}}\ge 0,\forall x\in \mathbb{R}\) nên từ đồ thị ta thấy \({f}'\left( {{x}^{2}} \right)\ge 0,\forall x\in \mathbb{R}\).

Với \(x\le 0\) ta luôn có \({h}'\left( x \right)=2x.{f}'\left( {{x}^{2}} \right)-2<0\).

Với x>0, ta có \({h}'\left( x \right)=0\Leftrightarrow {f}'\left( {{x}^{2}} \right)=\frac{1}{x}\begin{matrix} {} & \left( * \right) \\ \end{matrix}\)

Đặt \(t={{x}^{2}}\), phương trình \(\left( * \right)\) trở thành \({f}'\left( t \right)=\frac{1}{\sqrt{t}}\left( t>0 \right)\).

Xét sự tương giao giữa hai đồ thị hàm số \(y={f}'\left( t \right)\) và \(y=\frac{1}{\sqrt{t}}\) ở hình vẽ dưới đây:

Ta có \({f}'\left( t \right)=\frac{1}{\sqrt{t}}\Leftrightarrow t={{t}_{0}}\in \left( 0;1 \right)\). Khi đó \({h}'\left( x \right)=0\Leftrightarrow x=\sqrt{{{t}_{0}}}\).

Mặt khác \(h\left( 0 \right)=f\left( 0 \right)=0\) và \(h\left( 2 \right)=f\left( 4 \right)-4>0\) nên ta có bảng biến thiên của hàm \(y=h\left( x \right)\).

Từ bảng biến thiên ta có hàm số \(y=h\left( x \right)\) có một điểm cực trị và đồ thị hàm số \(y=h\left( x \right)\) cắt Ox tại hai điểm phân biệt ⇒ Hàm số \(y=g\left( x \right)=\left| h\left( x \right) \right|\) có ba điểm cực trị trong đó có hai điểm cực tiểu.

Bạn có muốn?

Xem thêm các đề thi trắc nghiệm khác

Chia sẻ

Một số câu hỏi khác có thể bạn quan tâm.