Cho hình chóp S.ABC có SA =2a, SB = 3a, SC = 4a và ASB = BSC = 600, ASC = 900. Tính thể tích V của khối chóp S.ABC.

A.A. \(V = \frac{{2{a^3}\sqrt 2 }}{9}\)
B.B. \(V = 2{a^3}\sqrt 2 \)
C.C. \(V = \frac{{4{a^3}\sqrt 2 }}{3}\)
D.D. \(V = {a^3}\sqrt 2 \)
Đáp án và lời giải
Đáp án:B
Lời giải:

Trên các cạnh SB, SC lần lượt lấy B’, C’ sao cho SA = SB’ = SC’= 2a

Khi đó, ta có: \(\frac{{{V}_{S.ABC}}}{{{V}_{S.AB'C'}}}=\frac{SB}{SB'}.\frac{SC}{SC'}=\frac{3}{2}.\frac{4}{2}=3=>{{V}_{S.ABC}}=3.{{V}_{S.AB'C'}}\)

* Tính \({{V}_{S.AB'C'}}\) (hình chóp \({{V}_{S.AB'C'}}\) có: \(SA=SB'=SC'=2a,\angle ASB'=\angle B'SC'={{60}^{0}},\angle ASC={{90}^{0}}\) ):

\(\Delta ASB'$ và \(\Delta SB'C'\) đều, có cạnh bằng \(2a\Rightarrow AB'=B'C'=2a\)

\(\Delta SA'C'\) vuông cân tại S => \(\left\{ \begin{matrix} A'C'=2a\sqrt{2} \\ {{S}_{AB'C'}}=\frac{1}{2}.{{\left( 2a \right)}^{2}}=2{{a}^{2}} \\ \end{matrix} \right.\)

Do \(\left\{ \begin{matrix} AB'=B'C'=2a \\ AC'=2a\sqrt{2}\,\,\,\,\,\,\,\,\, \\ \end{matrix}\Rightarrow \Delta AB'C' \right.\) vuông cân tại B’

Gọi I là trung điểm của A’C’ ⇒ I là tâm đường tròn ngoại tiếp tam giác AB’C’

Mà, chóp \({{V}_{S.AB'C'}}\), có \(SA=SB'=SC'=2a\Rightarrow SI\bot \left( AB'C' \right)\)

\(\Rightarrow {{V}_{S.AB'C'}}=\frac{1}{3}{{V}_{AB'C'}}.SI=\frac{1}{3}.2{{a}^{2}}.\frac{2a}{\sqrt{2}}=\frac{2\sqrt{2}{{a}^{3}}}{3}\Rightarrow {{V}_{S.ABC}}=3.{{V}_{S.AB'C'}}=2\sqrt{2}{{a}^{3}}\).

Bạn có muốn?

Xem thêm các đề thi trắc nghiệm khác

Chia sẻ

Một số câu hỏi khác có thể bạn quan tâm.