Có tất cả bao nhiêu giá trị nguyên dương của \(m\) không vượt quá 2021 để phương trình \({4^{x - 1}} - m{.2^{x - 2}} + 1 = 0\) có nghiệm?

2019

2018

2021

A.A.
B.B.
C.C.
D.D. 2017
Đáp án và lời giải
Đáp án:B
Lời giải:

Phương pháp:

- Đặt ẩn phụ \(t = {2^{x - 2}} > 0\).

- Cô lập \(m\), đưa phương trình về dạng \(m = g\left( t \right){\mkern 1mu} {\mkern 1mu} \left( {t > 0} \right)\).

- Lập BBT của hàm số \(g\left( t \right)\) khi \(t > 0\).

- Dựa vào BBT tìm giá trị của \(m\) để phương trình có nghiệm.

Cách giải:

Ta có \({4^{x - 1}} - m{.2^{x - 2}} + 1 = 0 \Leftrightarrow 4.{\left( {{2^{x - 2}}} \right)^2} - m{.2^{x - 2}} + 1 = 0\).

Đặt \(t = {2^{x - 2}} > 0\), phương trình đã cho trở thành \(4{t^2} - mt + 1 = 0 \Leftrightarrow m = \dfrac{{4{t^2} + 1}}{t} = g\left( t \right){\mkern 1mu} {\mkern 1mu} \left( {t > 0} \right)\).

Xét hàm số \(g\left( t \right) = \dfrac{{4{t^2} + 1}}{t} = 4t + \dfrac{1}{t}\) có \(g'\left( t \right) = 4 - \dfrac{1}{{{t^2}}} = 0 \Leftrightarrow t = \dfrac{1}{2}\).

BBT:

Dựa vào BBT ta thấy phương trình có nghiệm \(t > 0 \Leftrightarrow m \ge 4\).

Kết hợp điều kiện \(\left\{ {\begin{array}{*{20}{l}}{m \in {\mathbb{Z}^ + }}\\{m \le 2021}\end{array}} \right. \Rightarrow m \in \left\{ {4;5;6;...;2020;2021} \right\}\).

Vậy có 2018 giá trị của m thỏa mãn yêu cầu bài toán.

Chọn B.

Bạn có muốn?

Xem thêm các đề thi trắc nghiệm khác

Chia sẻ

Một số câu hỏi khác có thể bạn quan tâm.