Tìm tất cả các giá trị của tham số \(m\) để phương trình \(\log _3^23x + {\log _3}x + m - 1 = 0\) có đúng 2 nghiệm phân biệt thuộc khoảng \(\left( {0;1} \right).\)

A.A. \(0 < m < \frac{9}{4}\) 
B.B. \(m > \frac{9}{4}\) 
C.C. \(0 < m < \frac{1}{4}\) 
D.D. \(m >  - \frac{9}{4}\) 
Đáp án và lời giải
Đáp án:A
Lời giải:

Điều kiện: \(x > 0.\)

Đặt \(t = {\log _3}x \Rightarrow x \in \left( {0;\;1} \right) \Rightarrow t \in \left( { - \infty ;\;0} \right)\)

Khi đó ta có phương trình:

 \(\begin{array}{l}\log _3^23x + {\log _3}x + m - 1 = 0 \Leftrightarrow {\left( {{{\log }_3}3 + {{\log }_3}x} \right)^2} + {\log _3}x - 1 =  - m\\ \Leftrightarrow \log _3^2x + 3{\log _3}x =  - m \Leftrightarrow {t^2} + 3t =  - m\;\;\left( * \right)\end{array}\)

Phương trình đã cho có hai nghiệm phân biệt thuộc \(\left( {0;\;1} \right) \Leftrightarrow \) phương trình ẩn \(t\) có hai nghiệm phân biệt thuộc \(\left( { - \infty ;\;3} \right).\)

Xét hàm số: \(y = {t^2} + 3t\) trên \(\left( { - \infty ;\;3} \right)\) ta có: \(y' = 2t + 3\)

\( \Rightarrow y' = 0 \Leftrightarrow 2t + 3 = 0 \Leftrightarrow t =  - \frac{3}{2}.\)

Ta có BBT:

Để phương trình (*) có 2 nghiệm phân biệt thuộc \(\left( { - \infty ;\;0} \right)\) thì đường thẳng \(y = m\) cắt đồ thị hàm số \(y = f\left( t \right)\) tại hai điểm phân biệt thuộc \(\left( { - \infty ;0} \right) \Leftrightarrow  - \frac{9}{4} <  - m < 0 \Leftrightarrow 0 < m < \frac{9}{4}\)

Chọn A.

Bạn có muốn?

Xem thêm các đề thi trắc nghiệm khác

Chia sẻ

Một số câu hỏi khác có thể bạn quan tâm.