Câu 37 trang 162 Sách bài tập (SBT) Toán 9 Tập 1


Nội dung bài giảng

Cho điểm A cách đường thẳng xy là 12cm. Vẽ đường tròn (A ; 13cm).

a)      Chứng minh rằng đường tròn (A) có hai giao điểm với đường thẳng xy.

b)      Gọi hai giao điểm nói trên là B và C. Tính độ dài BC.

Giải:

a) Kẻ AH ⊥ xy

Ta có: AH = 12cm

Bán kính đường tròn tâm I là 13cm nên R = 13cm.

Mà   AH = d = 12cm

Nên suy ra  d < R

Vậy ( A; 13cm) cắt đường thẳng xy tại hai điểm phân biệt B và C.

b) Áp dụng định lí Pi-ta-go vào tam giác vuông AHC, ta có:

\(A{C^2} = A{H^2} + H{C^2}\)

Suy ra: \(H{C^2} = A{C^2} - A{H^2} = {13^2} - {12^2} = 25 \Rightarrow HC = 5(cm)\)

Ta có:   BC = 2.HC = 2.5 = 10 (cm)