Bài tập 3 - Trang 121 - SGK Giải tích 12


Nội dung bài giảng

Bài 3. Parabol \(y = {{{x^2}} \over 2}\) chia hình tròn có tâm tại gốc tọa độ, bán kính \(2\sqrt2\) thành hai phần. Tìm tỉ số diện tích của chúng.

Hướng dẫn giải:

Đường tròn đã cho có phương trình \({x^{2}} + {\rm{ }}{y^2} = {\rm{ }}8\)

Từ đó ta có: \(y =  \pm \sqrt {8 + {x^2}} \)

Tọa độ giao điểm của \((C)\) và \((P)\) thỏa mãn hệ: 

\(\left\{ \matrix{
{x^2} = 2y \hfill \cr
{x^2} + {y^2} = 8 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{y^2} + 2y - 8 = 0 \hfill \cr
{x^2} = 2y \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \matrix{
y = 2 \hfill \cr
x = \pm 2 \hfill \cr} \right.\)

\(S_1 = 2\int_0^2 {\left( {\sqrt {8 - {x^2}}  - {{{x^2}} \over 2}} \right)} d{\rm{x}}\)

\(= 2\int\limits_0^2 {\sqrt {8 - {x^2}} dx - \left[ {{{{x^3}} \over 3}} \right]} \left| {_0^2 = 2\int\limits_0^2 {\sqrt {8 - {x^2}} } dx - {8 \over 3}} \right.\)

Đặt \(x = 2\sqrt 2 \sin t \Rightarrow dx = 2\sqrt 2 {\mathop{\rm costdt}\nolimits} \)

Đổi cận: \(\eqalign{
& x = 0 \Rightarrow t = 0 \cr
& x = 2 \Rightarrow t = {\pi \over 4} \cr} \)

\({S_1} = 2\int\limits_0^{{\pi  \over 4}} {\sqrt {8 - 8{{\sin }^2}t} .2\sqrt 2 {\rm{costdt - }}{8 \over 3}} \)

\( = 16\int\limits_0^{{\pi  \over 4}} {{{\cos }^2}tdt - {8 \over 3}} \)\( = 8\int\limits_0^{{\pi  \over 4}} {(1 + cos2t)dt - {8 \over 3}} \)

\(= [8t + 4sint2t]|_0^{{\pi  \over 4}} - {8 \over 3} = 2\pi  + {4 \over 3}\)

Diện tích hình tròn là: \(\pi R^2=8\pi\)

và  \({S_2} = 8\pi  - {S_1}=6\pi+{4\over 3}.\)

Vậy  \({{{S_2}} \over {{S_1}}} = {{9\pi  - 2} \over {3\pi  + 2}}\).